
 1

A Split Implementation of the Dynamic Source Routing
Protocol for Lunar/Planetary Surface Communications

Jerry Toung
Advanced Management Technology, Inc.

NASA Ames Research Center
M/S 258-6

Moffett Field, CA 94035
jtoung @arc.nasa.gov

Raymond Gilstrap, Kenneth Freeman
NASA Ames Research Center

M/S 258-5
Moffett Field, CA 94035

{ray.gilstrap, kenneth.freeman-1}@nasa.gov

Abstract—Future NASA exploration missions will involve
teams of humans and robots working together to achieve
science objectives on lunar and planetary surfaces.
Members of these teams must be able to communicate with
each other interactively as they work together in close
proximity. However, current operational procedures and
technologies are based on the assumption that surface
elements operate in isolation and communicate solely with
the Earth, either directly or through orbiting relays.

The use of direct wireless communications among local
surface elements will be necessary to achieve optimal
communications efficiency. However, the surface elements
are mobile and may lose communication with one another,
due to traveling either out of range or behind an obstruction.
 This problem can be addressed through the use of a mobile
ad hoc network routing protocol, allowing nodes unable to
communicate directly to remain in contact by relaying data
through one or more intermediate nodes.

To test this method of dynamic surface-to-surface
communications, we have implemented the Dynamic Source
Routing (DSR) protocol in a UNIX-based test environment.
 DSR is an efficient routing protocol that allows
independent wireless nodes to self-organize into an ad hoc
network. To enhance performance, forwarding and routing
functions are split between kernel and user space,
respectively. We have conducted field testing to determine
the performance and effectiveness of DSR in maintaining
connectivity among mobile nodes in the presence of
communications outages caused by distance or obstructions.
 The results suggest that mobile ad hoc routing is a
promising basis for communications among surface
elements. 12

TABLE OF CONTENTS

1. INTRODUCTION..1
2. RELATED WORK..2
3. DSR PROTOCOL OVERVIEW..................................2
4. DSR IMPLEMENTATION ...3
5. FIELD TESTS ..4
6. CONCLUSIONS..5
7. FUTURE WORK ..6
APPENDIX A. DSRD ALGORITHM............................6
1
1 U.S. Government work not protected by U.S. copyright.
2 IEEEAC paper #1189, Version 4, Updated Dec. 12 2005

APPENDIX B. KERNEL MODULE ALGORITHM6
REFERENCES ..7
BIOGRAPHY ..7

1. INTRODUCTION

NASA surface exploration missions to date have featured
humans and robots operating essentially independently. The
communications requirements for these missions have been
relatively simple — the surface elements needed simply to
communicate back to Earth, either directly or via an orbiting
relay satellite. In contrast, future NASA surface exploration
missions will incorporate teams of humans and robots
working together to achieve science and engineering goals
on planetary surfaces. For example, a geologist collecting
samples on the lunar surface may work with a robotic
assistant to annotate or analyze those samples [9].

As a result, flexible and dynamic planetary communications
are critical to the success of NASA’s space exploration
vision. Flexible on-site surface-to-surface communications
would enable the planetary in-situ human and robotic teams
to collaboratively adjust their activities based on unfolding
situations. However, the use of surface-to-surface
communications would represent a fundamental shift in
communications support for NASA space missions. During
the lunar missions of the Apollo era, astronaut
communications and directives were relayed back to Earth.
As a result, astronaut exploration time was not well utilized.

Today, NASA is moving towards humans controlling
robotic assets in-situ. However, based upon today’s
operations models and technology, communications
between surface elements would still be relayed via the
Earth or orbiting platforms, thus introducing long delay. In
the case of the Spirit and Opportunity rovers from the Mars
Exploration Rover Mission [4], landed assets are
communicating via both an orbiting platform, the Mars
Global Surveyor [5], and NASA’s Deep Space Network
(DSN) [3] ground terminals. Due to the large physical
distances, there is long latency between the landed rovers
and the Earth based communications assets, measured in
minutes, as opposed to the milliseconds on typical Earth-
based communications systems. Similarly, communications
between the Moon and Earth are measured in seconds.
Furthermore, communications assets must be scheduled,
based upon orbital positions, antenna directions and ground

 2

station availability. For instance, if the orbiting platform
were out of the line of sight, communications would not be
possible. In the case of future lunar missions, this could
prevent timely communications between landed elements
that are a few meters apart. NASA’s traditional use of
scheduled point-to-point downlink of mission data could be
enhanced with the inclusion of a local dynamic routed
wireless communications architecture on the planetary
surface.

As are result, we began exploring mobile ad hoc routing
protocols, based upon work of the Internet Engineering Task
Force’s (IETF) Mobile Ad-hoc Networks (MANET)
Working Group. Due to the potential of low power and low
bandwidth mobile nodes on the lunar surface, we studied
reactive routing protocols, as opposed to the more
traditional proactive protocols. Since reactive protocols
initiate routing on an on-demand basis, as opposed to
sending periodic routing table updates like proactive
protocols, there is a reduction of routing load [11]. This is
advantageous in constrained power and bandwidth
environments.

2. RELATED WORK

Routing data efficiently in a mobile ad hoc network can be
challenging, and several protocols have been developed to
solve this problem. The MANET working group has
explored a number of these, including Dynamic Source
Routing (DSR) [1], Ad Hoc On-demand Distance Vector
(AODV) [6], Dynamic MANET On-demand (DYMO)
Routing [7], Dynamic Destination-Sequenced Distance-
Vector (DSDV) Routing [8], Optimized Link State Routing
(OLSR) [12], and Topology Broadcast based on Reverse-
Path Forwarding (TBRPF) [13]. Of these protocols,
MANET chose to focus on DSR, AODV, OLSR, and
TBRPF. OLSR and TBRPF are proactive protocols and, as
mentioned above, less desirable for planetary surface
communications. Of the two reactive protocols, AODV and
DSR, we ultimately chose to work with DSR because of its
ability to maintain a routing table with multiple paths.
Because of the unpredictability of node movements and
obstructions in the area being explored, path redundancy is a
critical requirement.

Many of the studies of these protocols are simulation based.
Furthermore, these simulations focus on the typical
Department of Defense problem, where there are a large
number of mobile nodes moving rapidly. In the case of
lunar exploration, there will likely be a small number of
mobile nodes exploring the planetary surface Also, the
studies that do involve live tests generally happen in a
university campus setting, with buildings and vehicles
serving as the main obstructions. As a result, we chose to
implement and validate DSR in an environment that more
closely resembles actual lunar and planetary surface
conditions.

3. DSR PROTOCOL OVERVIEW

This section provides an overview of the basic DSR
operations; a more detailed discussion is available in the
Internet Draft [1]. DSR is an efficient routing protocol that
allows independent wireless mobile nodes to self-organize
into an ad hoc network. The protocol specifies two main
operations, route discovery and route maintenance, which
allow nodes to learn and track routes to arbitrary
destinations in the network.

3.1 Route Discovery

The operation of the protocol is illustrated in Figure 1.
Time increases in the downward direction in the figure. The
initial phase is route discovery, in which a node S wishing
to send a packet to a destination node D broadcasts a
RouteRequest (RREQ) message for D to the network. This
message is contained in an IP packet that includes a DSR

header preceding the transport protocol packet. The header
includes the type of message, as well as the path taken by
the packet so far. Initially, the path just contains S. This
message propagates to the immediate neighbors of S,
including B. In turn, each neighbor appends itself to the path
recorded in the header and then propagates the RREQ to
each of its own neighbors, such as C in the figure. This
process repeats until the RREQ reaches D. D then issues a
RouteReply (RREP) message, which travels back to S along
the reverse of the recorded path. S then caches the route for
future use, specifying the full route to D in subsequent data
packets.

When S receives more than one RREP for a given
destination, it chooses the first route that it receives in order
to minimize the time for route discovery to take place. With
minor modifications, the implementation can choose a route
based on other metrics, such as previously observed
throughput or packet loss rate for each node along the path.

3.2 Route Maintenance

Route maintenance is the mechanism by which S detects
during transmission if its route to D has become invalid,

unicast
route reply

data
received

C moves
away

broadcast
route request

route
error

data sent

data sent

S B C D

time

S,D?
SB,D?

SBC,D?

SBCD

Figure 1 – DSR Protocol Operation

SBCD SBCD
SBCD

SBCD
SBCD

SB

C unreach

 3

typically due to an intermediate node in the path failing or
moving out of communication range. Path validity is
monitored on a per-hop basis, with each node along the path
using an acknowledgement mechanism to ensure that a
packet was received by its downstream neighbor. This
acknowledgement mechanism may be provided by the
underlying layer 2 protocol (such as IEEE 802.11), or else a
node may infer acknowledgement from overhearing its
downstream neighbor relay the packet (for example, B
concludes that C successfully received a packet after
overhearing C transmit the packet to D). If neither of these
mechanisms is available, DSR can rely on its own
acknowledgement scheme, in which a node sends an
AcknowledgmentRequest message to its downstream
neighbor and awaits a corresponding AcknowledgmentReply
message.

Regardless of the mechanism used, if a node does not
receive an acknowledgement from a downstream neighbor,
it assumes that neighbor is unreachable and marks invalid
all routes in its cache that contain that neighbor. The node
then issues a RouteError (RERR) message to all upstream
nodes that have recently used the invalidated routes. The
upstream nodes can then attempt to use other routes in their
route caches, or they can invoke route discovery again to
find new routes that do not include the failed node.

4. DSR IMPLEMENTATION

Implementing the dual operations of routing and forwarding
in a mobile ad-hoc network routing protocol poses
challenges in most operating systems. Packet forwarding
refers to the process of sending a packet to the next hop on
the path toward its destination, as determined by consulting
a table (the forwarding table). Forwarding is implemented
inside the kernel to maximize performance. Packet routing
refers to the process of building the forwarding table, by
communicating with neighboring nodes to learn enough of
the network topology to determine the next hop to various
destinations within the network. Routing is normally
implemented in user space as daemon program, to avoid
burdening the kernel with the overhead of communicating
with other hosts and computing routes.

DSR and other on-demand routing protocols combine these
functions, and so pose several implementation challenges
[2]. One major issue is this intermixing of the forwarding
and routing functions. Since these normally take place at
different layers of the operating system, a choice of how to
combine them is necessary. A complete in-kernel
implementation would minimize expensive copying of
packets between the kernel and user space, but would
require heavy modifications to the IP stack and would
impose the above communication and computation
overhead on the kernel. A complete user-space approach is
much simpler to implement, but forwarding performance
will suffer because each packet would be copied into user

space for forwarding.

A second issue is the need for a mechanism to handle
outstanding packets. Because routes which do not exist a
priori need to be discovered before packets can be sent to
the corresponding destination, the outstanding packets must
be queued while route discovery takes place.

4.1 Implementation Approach

Kawada et al. [2] introduce a split kernel-user design,
requiring minimal modifications to the kernel source. The
idea was to keep the forwarding and routing functions in
their natural domains, while enabling the communication
between the two functions necessary for the operation of the
protocol. Their Linux-based DSR was designed around a
custom Ad-hoc Support Library (ASL), consisting of a user-
space Routing Daemon and two kernel modules: a DSR-
forwarding-helper and a DSR-maintenance-helper. This
design has the advantages of both optimal performance and
simple implementation.

Because of the advantages of Kawada’s design, we decided
to use it as a model for our UNIX-based implementation of
DSR (Figure 2). We utilized FreeBSD, an operating system
based on the Berkeley Software Distribution (BSD) version
of UNIX, running on Intel-based hosts. Our implementation
features a user-space daemon (dsrd) and a single kernel
module (if_dsr.ko), and requires minimal changes to the
base FreeBSD code. The dsrd daemon performs the route
request/maintenance functions, and uses system calls to
populate the kernel-based forwarding table. The if_dsr.ko
module interacts with the IP stack to forward DSR packets.

In the following sections, we will first present the system-
specific implementation details. Also, we will present the
algorithms of the Routing Daemon and the kernel module.

ipintrq (The IP Queue)

User Space

Kernel Space

dsr
d

TCP or UDP

ip_forwarding
ip_output ip_input

dsr_output dsr_input

(*if_input)()
device driver

(*if_output)()
physical network

interface output function

Figure 2 – DSR Node Structure

 4

4.2 Implementation Details

The Dynamic Source Routing (DSR) protocol was
implemented under FreeBSD 5.x and 6.0 using the dynamic
kernel linker facility. Software developers utilize kernel
modules, or KLDs, in order to implement new kernel
functionality modularly, without needing to of reboot the
system. Hence through KLDs, functionality can be
dynamically added and removed while the system is
running.

The DSR kernel module is implemented as a virtual network
device driver and operates as follows:

Incoming Packets – The kernel module adds a new protocol
switch input routine, dsr_input, to the inbound IP stack. The
existing IP module reads packets from the IP input queue
(ipintq) as normal. For every packet processed by standard
system call ip_input, when the protocol field in the header
indicates a DSR packet, the packet is passed to the dsr_input
function. dsr_input processes DSR packets according to
DSR specification [1]. After the routine is done with DSR-
specific tasks, it passes the packet back to IP, which either
transmits it to upper layer protocols like UDP or TCP (if the
packet is destined for this host), or forwards it to the next
hop in the network.

Outgoing Packets – The virtual interface dsr0, defined by
if_dsr.ko, accepts packets from the FreeBSD ip_output

function just like any other interface, but uses its own
mechanism to arrange for their delivery via the actual
physical interface. Packets are transferred to the DSR
module on output by configuring the dsr0 interface with an
IP address in an administratively defined DSR subnet. This
can be accomplished with a command such as:

ifconfig dsr0 10.10.1.1/24

This sets the IP address and subnet of dsr0 and implicitly
configures the host’s routing tables such that any packet
with a destination address in that subnet will be directed to
dsr0. From there, dsr_output will be called to further
process packets sent to dsr0 and forward them to the
physical interface.

The algorithm for the dsrd routing daemon is listed in
Appendix A. It handles the details of the route discovery
and route maintenance operations, exchanging messages
with both the kernel route cache and with corresponding
routing daemons on other nodes.

Appendix B shows the kernel module algorithm. Three
functions are of interest: manet_output, dsr_output and
dsr_input.

manet_output receives messages sent by dsrd. These
messages are placed in a FIFO queue called 'mnq'.
Messages are transmitted between dsrd and the kernel
module using a facility similar to a standard UNIX routing
socket.

dsr_input processes incoming IP packets that carry a DSR
option header. The option header could either be a
RouteRequest, AcknowledgmentRequest, Acknowledgment,
or SourceRoute header. Once the pertinent information is
retrieved from the packet, it is passed to the dsrd via the
system function raw_input.

 dsr_output receives packets from ip_output and retrieves
messages from the FIFO queue. It inserts a DSR option
header in packets that don't already have one (Figure 3), or
forwards packets that do.

5. FIELD TESTS

The primary focus of this work was to determine the
suitability of dynamically routed communications for
surface mission environments. To that end, several sets of
tests were performed to determine the effectiveness of DSR
for enabling routing between hosts that cannot communicate
directly. Throughput and latency measurements were also
taken to determine the impact of DSR overhead. The tests
used four laptops running DSR-enhanced FreeBSD,
communicating via Lucent Orinoco 802.11b interfaces.

Three types of test environments were used:

Firewall-based emulation – The ipfw firewall, built into the
FreeBSD kernel, was configured on each laptop to block
traffic from one or two of the other laptops’ MAC
addresses. This allowed the laptops to remain in RF
communication range of each other in a laboratory
environment, while still providing communication outages
between selected pairs of nodes.

Building exterior – The laptops were placed in locations on
the outside of a building, as shown in Figure 4. This
arrangement allowed each laptop to see its immediate
neighbor(s), but the building blocked communication with
other laptops.

IP Header

IP Payload

IP Header

IP Payload

DSR Header
+ Options

Figure 3 – IP Packet Following DSR Header Insertion

 5

Mars-like terrain – The laptops were placed in rugged
desert locations in Utah and Arizona, as well as a flat, rocky
area in northern California. These environments mimic the
type of terrain that might be encountered during an actual
mission. In this case, communication outages may result
from separation between nodes, obstructions, or in some
cases destructive interference caused by multipath
reflections. Figure 5 shows a representative arrangement.

Test Results

The following results were observed:

Route Discovery – dsrd records a timestamped log of all
routing messages and route cache updates. The standard
ping utility was used to generate low-volume traffic to new
destinations, and the dsrd logs and ping round trip times
were observed. The log data indicated that the average
elapsed time from the issue of an RREQ to the receipt of an
RREP was approximately one second. However, as more
hops were added between source and destination, the effects
of transient packet losses between adjacent nodes during
route discovery became more pronounced. For example,
packets traveling from node 1 to node 4 can be affected by
losses between any of the three pairs of adjacent nodes. In
the worst case, successful route discovery in a four-node
network took several tens of seconds. Further study is
presently underway to characterize this behavior and
correlate it with fluctuations in observed RF signal strength.

Multihop routing – DSR was able to successfully route
packets between source and destination nodes separated by
zero, one, or two intermediate nodes. In cases where the
source or destination node was mobile, the route cache entry
was updated when either the node lost contact with its next-
hop neighbor or when the route expired.

Latency/Jitter – Between two nodes that are within
communication range of each other, the observed latency
using DSR was not measurably greater than the latency
without DSR at the same separation distance. The latency
measured during multiple-hop tests was more variable, since
latency is affected by the completion time of the route

discovery process as described above. When a valid route
was already in the cache, round trip times were observed to
be approximately equal to the sum of the propagation delays
between adjacent nodes, or 30-40 milliseconds in a typical
experiment. When route discovery was needed, the round
trip times for the initial ping packets that triggered the
discovery process were equal to the route discovery
completion time.

Throughput – Throughput tests were performed using Iperf
[10]. The tests were primarily done using the UDP
transport protocol. This was done to gain a better
understanding of the raw throughput of the protocol without
the artifacts introduced by TCP’s response to the highly
variable latency. Tests were run from node 1 to each of
nodes 2, 3, and 4. Average throughput values are shown in
Table 1. These values compare with typical observed
throughput of 1 Mbps between adjacent nodes without DSR.
 As the table shows, DSR imposes a modest overhead on
data transfers between adjacent nodes, while providing a
useful data rate even to a node three hops away that is
otherwise unreachable.

Table 1 – Throughput Results

6. CONCLUSIONS

Our test results indicate that ad hoc routing protocols such
as DSR have the potential to greatly increase the flexibility
of surface communications. By allowing surface nodes to
relay data among themselves, the effective communication
range of a surface-based workgroup can easily adapt to
nodes moving about a work area in the presence of
obstructions. Our test results also suggest that more work is
needed to make the route discovery process more robust in
the presence of transient packet losses.

Path Throughput (Kbps)
1-2 819
1-3 356
1-4 262

1

2 3
3

4
Building

Figure 4 – Node Placement in Building-Exterior Tests

Communication
path

Rock Outcrop
1

2

3

4

Figure 5 – Node Placement in Mars-Like Terrain

Communication path

 6

7. FUTURE WORK

Our next goal is to get further experience with ad hoc
routing in realistic mission environments. To that end, we
are planning to adapt our DSR implementation for use in a
mission communications hardware testbed. This testbed
will include a channel path simulator that can replicate the
exact RF environment that will be encountered on the lunar
or Martian surface.

APPENDIX A. DSRD ALGORITHM

initialize RouteCache
initialize RouteRequestTable
initialize DaemonLogfile
m_sock = communication socket between dsrd and the kernel module
s_sock = raw IP socket

loopforever 1
{
 process RouteRequestTable
 if m_sock bit is set
 {
 loopforever 2
 {
 read 'msg' from m_sock
 switch(msg)
 Case AddRoute:
 /* the DSR module is passing us source route
 information it got from a packet it received */.
 Add that source route into RouteCache.
 Break (leave loopforever2).

 Case Got an Acknowledgment:
 if MaintHoldOffTime has elapsed and this Ack
 comes from a previous host we know OR if this is
 coming from a different host than in the last
 Ack Request we issued, send Ack Reply message to dsr
 kernel module via m_sock socket.
 Break.

 Case Got RouteRequest:
 store source route information into RouteCache.
 Register the newly received Route Request in the
 RouteRequestTable if it's not already in there.
 Search the RouteCache for a route to the target node.
 If a route is found, build a RouteReply packet and
 send it back on s_sock socket.
 If no route is found rebuild the Route Request packet,
 decrement TTL and send it on s_sock socket.

 Case Get Route:
 /* we received a message from the dsr module saying
 that it needs the route to a certain destination.*/
 Search the RouteCache for a route to that destination.
 If a route is found, send a Route message (RT) on
 m_sock socket.
 If no route is found, build a Route Request packet and
 send it out via the s_sock socket.

 Case Got RouteReply:
 if our IP address is present in the RouteReply source
 route, store in the RouteCache the path starting at
 our IP address and on.

 Write this newly acquired source-route on m_sock socket. It could be that
the module needs it.

 Case Got AcknowlegmentRequest:

 build an IP packet containing a DSR header with
 Acknowlegment field set.
 Send that packet on s_socket.

 Case Got RouteError:
 /*We receive 3 IP address from the module. (E) is the node
 That detected that (U) has become unreachable and that
 (S) needs to be notified */
 Update RouteCache based on that information. Remove
 any source route with broken link E -> U.
 Search for a route in RouteCache to destination S.
 If route is found
 Build SourceRoute+RouteError packet and send it on
 s_sock socket.
 Else
 Build RouteRequest packet to target node S and send it on
 S_sock socket.
 }
 }
}

APPENDIX B. KERNEL MODULE ALGORITHM

 loopforever
{
 read 'mnq' FIFO
 switch(msg.type)
 case RT:
 /* This message contains source route to a target node*/
 look at all the outstanding packets in the SendBuffer and
 send those that needs to go to that target by using this source
 route information.
 Put a copy of every packets sent in the MaintenanceBuffer.
 Break

 case ACKREP:
 /* we have received an acknowledgment from a host 1-hop away*/
 Remove every packet in the MaintenanceBuffer that match this
 acknowledgment information (i.e dest IP addresses are the same).
 Break
}

whileloop on MaintenanceBuffer
{
 if a packet has been held for more than MaintainHoldOffTime &&
 if it has been sent more than MaxMaintRexmt
 Issue RouteError.
 Else if a packet retransmit count < MaxMaintRexmt
 resend the packet out.
 Increment the packet's retransmit counter.
}
switch(IP protocol)
{
 case IPPROTO_DSR:

 switch(dsr option)
 {
 case SourceRoute(SRCRT):
 if our IP address is listed in the source route path
 forward packet.
 Put a copy of the packet in the MaintenanceBuffer.
 Else
 discard packet.
 Break

 case Acknowledgment (ACK):
 case AcknowledgmentReply (ACKREQ):
 send packet out if we are the source.
 Break

 7

 case RouteRequest (RREQ):
 set destination address to IP limited broadcast address =
 255.255.255.255
 send packet out.
 Break.
 }
J
 case ICMP or TCP or UDP or IP:
 if we don't know the route to the destination,
 issue a GetRoute (GETRT) message to the RoutingDaemon .
 Put packet in the SendBuffer.
 Else
 build a SourceRoute and AcknowledgmentRequest
 options in a DSR header.
 Insert the DSR header into the packet after the IP header.
 Put a copy of the packet on the MaintenanceBuffer .
 Send packet out.

 Break.
)

REFERENCES

[1] D.B. Johnson, D.A. Maltz, Y Hu, Dynamic Source
Routing Protocol for Mobile Ad Hoc Networks (DSR),
http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-
10.txt, July 2004.

[2] V. Kawadia, Y. Zhang, B. Gupta, System services for

implementing ad-hoc routing protocols, Proceedings of
the International Conference on Parallel Processing
Workshops, 2002.

[3] Deep Space Network (DSN),

http://deepspace.jpl.nasa.gov/dsn/

[4] Mars Exploration Rover Mission,

http://marsrovers.jpl.nasa.gov/home/index.html

[5] Mars Global Surveyor Mission,

http://marsprogram.jpl.nasa.gov/mgs/

[6] C. Perkins, E. Belding-Royer, S. Das. Ad Hoc On-

Demand Distance Vector (AODV) Routing.
http://www.ietf.org/rfc/rfc3561.txt, July 2003.

[7] I. Chakeres, E. Belding-Royer, Dynamic MANET On-

demand (DYMO) Routing, http://www.ietf.org/internet-
drafts/draft-ietf-manet-dymo-02.txt, June 2005.

[8] C.E. Perkins, P. Bhagwat, Highly Dynamic Destination-

Sequenced Distance-Vector Routing (DSDV) for Mobile
Computers, In Proceedings of ACM SIG-COMM’94,
Lonkon, U.K., September 1994.

[9] W. Clancey. “Mobile Agents Project.”

http://is.arc.nasa.gov/HCC/tasks/MblAgt.html

[10] Iperf Bandwidth Measurement Tool,

http://dast.nlanr.net/Projects/Iperf/

[11] C.E. Perkins, E.M. Royer, S.R. Das, M.K. Marina,
Two On-Demand Routing Protocols for Ad Hoc
Networks, IEEE Personal Communications, February
2001

[12] T. Clausen, P. Jacquet. Optimized Link State Routing

Protocol (OLSR). http://www.ietf.org/rfc/rfc3626.txt,
October 2003.

[13]. Topology-Based Reverse Path Forwarding.

http://tbrpf.erg.sri.com

BIOGRAPHY

Jerry Toung is a Network Software Engineer with Advanced
Management Technology, Inc. (AMTI) at NASA Ames
Research Center. He received a Diplome d'Ingenieurs
(MSEE) in 2000 from Polytech Nantes in Nantes, France.
He has been involved in the design, development and testing
of networking software with the NREN group for over 5
years. In addition to DSR, his projects include a high-
performance UNIX workstation-based network monitoring
system and network traffic analysis tools.

Raymond Gilstrap is a network engineer with the NASA
Research and Engineering Network (NREN) group at
NASA Ames Research Center. He received a B.S. in
Electrical Engineering at Florida Agricultural and
Mechanical University in 1995, an M.S. in Electrical
Engineering from the University of California, Berkeley in
1997. He has been involved in numerous projects since
joining NASA in 1998, including development of the
PCMon measurement and monitoring tool, performance
engineering to support a real-time application over satellite
between the U.S. and Japan, and providing engineering
support for several scientific field experiments.

Kenneth Freeman has been manager of the NREN group at
NASA Ames Research Center for the last five years. He
received a B.S. in Electrical Engineering and Computer
Science from the University of California, Berkeley in 1988
and an M.S. in Electrical Engineering from San Jose State
University, San Jose, CA in 1990. He joined NASA in 1991
and was instrumental in the design of the original NREN
testbed. He has played major roles in several engineering
projects. Examples include development of the Next
Generation Internet Exchange (NGIX) West; development
of the first IP Multicast exchange point; development and
deployment of QoS, measurement and monitoring, and IPv6
technologies on NASA networks; and prototyping of a wide
range of high-performance networking applications, from
remote echocardiography to air-traffic management.

